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Abstract

In the philosophy of probability there are two central questions we are
concerned with. The first is: what is the correct formal theory of proba-
bility? Orthodoxy has it that Kolmogorov’s axioms are the correct axioms
of probability. However, we shall see that there are good reasons to con-
sider alternative axiom systems. The second central question is: what do
probability statements mean? Are probabilities “out there”, in the world
as frequencies, propensities, or some other objective feature of reality, or
are probabilities “in the head”, as subjective degrees of belief? We will sur-
vey some of the answers that philosophers, mathematicians and physicists
have given to these questions.

1. Introduction

The famous mathematician Henri Poincaré once wrote of the probability calcu-
lus: “if this calculus be condemned, then the whole of the sciences must also
be condemned” (Poincaré [1902], p. 186).

Indeed, every branch of science makes extensive use of probability in some
form or other. Quantum mechanics is well–known for making heavy use of
probability. The second law of thermodynamics is a statistical law and, for-
mulated one way, states that the entropy of a closed system is most likely
to increase. In statistical mechanics, a probability distribution known as the
micro–canonical distribution is used to make predictions concerning the macro-
properties of gases. In evolutionary theory, the concept of fitness is often de-
fined in terms of a probability function (one such definition says that fitness is
expected number of offspring). Probability also plays central roles in natural se-
lection, drift, and macro-evolutionary models. The theory of three dimensional
random walks plays an important role in the biomechanical theory of a diverse
range of rubbery materials: from the resilin in tendons that help flap insect
wings, to arteries near the heart that regulate blood flow. In ecology and con-
servation biology, we see concepts like the expected time to extinction of a pop-
ulation. In economics, stochastic differential equations are used extensively to
model all sorts of quantities: from inflation to investment flows, interest rates,
and unemployment figures. And all of the sciences make extensive use of prob-
ability in the form of statistical inference: from hypothesis testing, to model
selection, to parameter estimation, to confirmation, to confidence intervals. In
science, probability is truly everywhere.

But the sciences do not have exclusive rights to probability theory. Proba-
bility also plays an important role in our everyday reasoning. It figures promi-
nently in our formal theories of decision making and game playing. In fact,
probability is so pervasive in our lives that we may even be tempted to say
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that “the most important questions of life, are indeed for the most part only
problems of probability”, as Pierre–Simon Laplace once did (Laplace [1814], p.
1).

In philosophy of probability, there are two main questions that we are con-
cerned with. The first question is: what is the correct mathematical theory of
probability? Orthodoxy has it that this question was laid to rest by Andrei Kol-
mogorov in 1933 (Kolmogorov [1933]). But as we shall see in §2, this is far
from true; there are many competing formal theories of probability, and it is
not clear that we can single one of these out as the correct formal theory of
probability.

These formal theories of probability tell us how probabilities behave, how
to calculate probabilities from other probabilities, but they do not tell us what
probabilities are. This leads us to the second central question in philosophy of
probability: just what are probabilities? Or put another way: what do probabil-
ity statements mean. Do probability claims merely reflect facts about human
ignorance? Or do they represent facts about the world? If so, which facts?
In §3, we will see some of the various ways in which philosophers have tried
to answer this question. Such answers are typically called interpretations of
probability, or philosophical theories of probability.

These two central questions are by no means independent of each other.
What the correct formal theory of probability is clearly constrains the space of
philosophical interpretations. But it is not a one way street. As we shall see,
the philosophical theory of probability has a significant impact on the formal
theory of probability too.

2. The Mathematical Theory of Probability

In probability theory, we see two types of probabilities: absolute probabilities
and conditional probabilities. Absolute probabilities (also known as uncon-
ditional probabilities) are probabilities of the form “P�A�”, while conditional
probabilities are probabilities of the form “P�A; B�”—read as “the probability
of A, given B”.1 These two types of probability can be defined in terms of
each other. So when formalizing the notion of probability we have a choice: do
we define conditional probability in terms of unconditional probability, or vice
versa? The next section, §2.1, will focus on some of the various formal theories
of probability that take absolute probability as primitive and define conditional
probability in terms of the former. Then in §2.2, we will look at some of the
various formal theories that take conditional probability as the primitive type
of probability.

2.1. Absolute Probability as Primitive

Kolmogorov’s theory of probability (Kolmogorov [1933]) is the best known for-
mal theory of probability and it is what you will learn if you take a course on
probability. First, we start with a set of elementary events, which we will refer
to by 
. For example, if we are considering the roll of a die where the possible

1Another common notation for conditional probability is P�AjB�, though some authors take
this notation to have a very particular definition that does not correspond to our concept of
conditional probability (see e.g., Hájek [2003]). Some authors also reverse A and B, so that P�B;A�
stands for the conditional probability of A given B, though this notation is not often used.
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outcomes are the die landing with “one” face up, or with “two” face up, etc.,
then 
 would be the set f1;2;3;4;5;6g. From this set of elementary events, we
can construct other, less fine–grained events. For example, there is the event
that an odd number comes up. We represent this event with the set f1;3;5g.
Or, there is the event that some number greater than two comes up. We rep-
resent this event with set f3;4;5;6g. In general, any event constructed from
the elementary events will be a subset of 
. The least fine–grained event is the
event that something happens—this event is represented by 
 itself. There is
also the event that cannot happen, which is represented by the empty set, ;.2

In probability theory, we often want to work with the set of all events that
can be constructed from 
. In our die example, this is because we may want
to speak of the probability of any particular number coming up, or of an even
or odd number coming up, of a multiple of three, a prime number, etc. It is
typical to refer to this set by F . In our example, if F contains every event
that can be constructed from 
, then it would be rather large. A partial listing
of its elements would be: F � f;;
; f1g; f2g; :::; f6g; f1;2;3g; f4;5;6g; f1;2g;
f1;2;3;4;5g; :::g. In fact, there are a total of 26 � 64 elements in F .

In general, if an event, A, is in F , then so is its complement, which we write
as 
 n A. For example, if f3;5;6g, is in F , then its complement, 
 n f3;5;6g �
f1;2;4g is in F . Also, if any two events are in F , then so is their union.
For example, if f1;2g and f4;6g are in F , then their union f1;2g [ f4;6g �
f1;2;4;6g is in F . If a set, S, has the first property (i.e., if A is in S, then 
 nA
is in S), then we say S is closed under 
-complementation. If S has the second
property (i.e., if A and B are in S, then A [ B is in S), then we say S is closed
under union. And if S has both of these properties, i.e., if it is closed under
both 
-complementation and union, then we say that S is an algebra on 
. If a
set, S, is an algebra, then it follows that it is also closed under intersection, i.e.,
that if A and B are in S, then A\ B is also in S.

In our die example, it can be seen that F (the set that contains all the sub-
sets of 
) is an algebra on 
. However, there are also algebras on 
 that do not
contain every event that can be constructed from 
. For example, consider the
following set: F � f;; f1;3;5g; f2;4;6g;
g. The elements of this F would cor-
respond to the events: (i) nothing happens; (ii) an odd number comes up; (iii) an
even number comes up; and (iv) some number comes up. This is an important
example of an algebra because it illustrates how algebras work. For example,
not every “event”—intuitively understood—gets a probability. For instance, the
event that the number two comes up gets no probability because f2g is not in
F . Also note that even though this F does not contain every subset of 
, it
is still closed under union and 
-complementation. For example, the union of
f1;3;5g and f2;4;6g is 
, which is in F , and the 
-complement of, say, f1;3;5g
is f2;4;6g, which is also clearly in F .

Once we have specified an algebra, F , we can then define a probability
function that attaches probabilities to every element of F . Let P be a function
from F to the real numbers, R, that obeys the following axioms:

(KP1) P�A� � 0

(KP2) P�
� � 1

(KP3) P�A[ B� � P�A�� P�B�; if A\ B � ;
2It is a theorem of standard set theory that the empty set is a subset of every subset.
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for every A and B in F . We call any function, P , that satisfies the above con-
straints a probability function.3

So far we have assumed that F only contains a finite number of events. But
sometimes we want to work with infinitely many events (e.g., consider choosing
a random point on a line; there are infnitely many points than can be chosen).
When F is countably infinite4, we replace KP3 with:

(KP4) P

0@i�1[
i�1

Ai

1A � i�1X
i�1

P�Ai�

on the condition that the intersection of any two of the Ai is the empty set. A
simple example will help illustrate how these last two axioms work. Suppose
we randomly choose a positive integer in a way such that the number 1 has a
probability of 1/2 being chosen, the number 2 has a probability of 1/4 being
chosen, and so on. In general, the number n has a probability of 1=2n of being
chosen. Let us write the event that the number n gets chosen as An (this will
be the set fng). So for example, the event that some integer below 4 is chosen
is: A1 [A2 [A3 which is the set f1;2;3g. The probability of this event is then:

P�A1 [A2 [A3� � P�A1�� P�A2�� P�A3�
� 1=2� 1=4� 1=8

And the probability that some number is chosen is:

P

0@i�1[
i�1

Ai

1A �
i�1X
i�1

P�Ai�

which can be expanded as:

P�A1 [A2 [A3 [ :::� � P�A1�� P�A2�� P�A3�� :::
� 1=2� 1=4� 1=8� :::
� 1

This fourth axiom—known as countable additivity—is by far the most contro-
versial. Bruno de Finetti (de Finetti [1974]) famously used the following exam-
ple as an objection to KP4. Suppose you have entered a fair lottery that has a
countably infinite number of tickets. Since the lottery is fair, each ticket has
an equal probability of being the winning ticket. But there are only two ways
in which the tickets have equal probabilities of winning, and on both ways we
run into trouble. On the first way, each ticket has some positive probability of
winning—call this positive probability �. But then, by KP4, the probability that
some ticket wins is � added to itself infinitely many times, which equals infinity,
and so violates KP2. The only other way that the tickets can have equal prob-

3Also, for any 
, F , and P that satisfy the above constraints, we call the triple �
;F ; P� a
probability space.

4A set is countable if there is a one to one correspondence between it and some subset of the
Natural Numbers, and uncountable if there is not. Some examples: any finite set is countable,
the set of even integers is countable (and thus countably infinite), the set of rational numbers is
countable (and countably infinite), the set of real numbers is not countable, and the set of real
numbers between 0 and 1 is also not countable.
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ability of winning is if they all have zero probability. But then KP4 entails that
the probability that some ticket wins is 0 added to itself infinitely many times,
which is equal to zero and so again KP2 is violated. It is a matter of either too
much or too little!

Axioms KP1–4 define absolute probability functions on sets. However, many
philosophers and logicians prefer to define probability functions on statements,
or even other abstract objects instead. One reason for this is because Kol-
mogorov’s axioms are incompatible with many philosophical interpretations
of probability. For example, Karl Popper points out that the formal theory of
probability should be sensitive to the needs of the philosophical theory of prob-
ability:

In Kolmogorov’s approach it is assumed that the objects a and b in p�a;b� are
sets (or aggregates). But this assumption is not shared by all interpretations: some
interpret a and b as states of affairs, or as properties, or as events, or as state-
ments, or as sentences. In view of this fact, I felt that in a formal development, no
assumption concerning the nature of the “objects” or “elements” a and b should
be made [...]. Popper [1959b], p. 40

A typical alternative to Kolmogorov’s set theoretic approach to probability is
an axiom system where the bearers of probability are sentences (in §2.2, we
shall see an axiom system inspired by Popper’s work that makes less assump-
tions concerning what the bearers of probability are). For cases where there are
only finitely many sentences, it is fairly easy to “translate” axioms KP1–3 into
axioms that define probability functions on sentences. Instead of an algebra,
F , we have a language, L. L is a set of atomic sentences and their Boolean
combinations. So, if A and B are in L, then so is: their conjunction, A^ B, read
as "A and B"; their disjunction A_ B, read as "A or B"; their negations, e.g., :A,
read as “not A”; their equivalence, A � B, read as “A is equivalent to B”; and
their material implications, e.g., A � B, read as “if A, then B”. We also define a
consequence relation ‘ over the language L. So for example, A ‘ B is read as
"A entails B", or "B is a consequence of A". Because tautologies are always true,
if A is a tautology, we write ‘ A, and since logical falsehoods are always false,
if A is a logical falsehood, we write ‘ :A.5 We then let P be a function from L
to R that satisfies:

�P1� P�A� � 0

�P2� P�A� � 1; if ‘ A
�P3� P�A_ B� � P�A�� P�B�; if ‘ :�A^ B�

for every A and B in L. However, if we are interested in languages with infinitely
many sentences, we cannot simply add on a fourth axiom for countable additiv-
ity as we did with axiom KP4. This is because we don’t have infinite disjunction
our logic. A new logic has to be used if we wish to have a countable additiv-
ity axiom for probabilities attached to sentences.6 Axioms P1–3 are what most
philosophers use, so I will refer to them as the standard theory of probability
(however, the reader should not take this to mean they are the “correct” axioms
of probability).

5This overview of classical logic is necessarily very brief. The reader is who is not familiar with
these ideas is encouraged to read CHAPTER ON LOGIC.

6See e.g., Roeper and Leblanc [1999], p. 26 for details on how this can be done.
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We also have the notion of conditional probability to formalize. On the
accounts just mentioned it is typical to define conditional probability in terms
of unconditional probability. For example, in the standard theory of probability,
conditional probability is defined in the following way:

(CP) P�A; B� df� P�A^ B�
P�B�

, where P�B� � 0

Many have pointed out that this definition leaves an important class of condi-
tional probabilities undefined when they should be defined. This class is com-
prised of those conditional probabilities of the form, P�A; B� where P�B� � 0.
Consider the following example, due to Émile Borel. Suppose a point on the
Earth is chosen randomly—assume the Earth is a perfect sphere. What is the
probability that the point chosen is in the western hemisphere, given that it lies
on the equator? The answer intuitively ought to be 1/2. However, CP does not
deliver this result, because the denominator—the probability that the point lies
on the equator—is zero.7

There are many responses one can give to such a problem. For instance,
some insist that any event that has a probability of zero cannot happen. So
the probability that the point is on the equator must be greater than zero,
and so CP is not undefined. The problem though is that it can be proven that
for any probability space with uncountably many events, uncountably many of
these events must be assigned zero probability, as otherwise we would have a
violation of the probability axioms.8 This proof relies on particular properties
of the real number system, R. So some philosophers have said so much the
worse for the real number system, opting to use a probability theory where
the values of probabilities are not real numbers, but rather something more
mathematically rich, like the hyper–reals, HR (see e.g., Lewis [1980] and Skyrms
[1980]).9

Another response that philosophers have made to Borel’s problem is to opt
for a formal theory that takes conditional probability as the fundamental notion
of probability (we will see some of these theories in §2.2). The idea is that by
defining absolute probability in terms of conditional probability while taking
the latter as the primitive probability notion to be axiomatized, conditional
probabilities of the form P�A; B� where P�B� � 0 can be defined.10

There are, also, other reasons to take conditional probability as the funda-
mental notion of probability. One such reason is that sometimes the uncon-
ditional probabilities P�A ^ B� and P�B� are undefined while the conditional
probability P�A; B� is defined, so it is impossible to define the latter in terms of
the former. The following is an example due to Alan Hájek (Hájek [2003]). Con-
sider the conditional probability that heads comes up, given that I toss a coin

7It is zero because in this example probability corresponds to area. Since the equator has an
area of zero, the probability that the chosen point lies on the equator is zero, even though this
event is possible.

8See e.g., Hájek [2003] for the proof.
9The hyper–reals are all the real numbers (1, 3/4,

p
2, �� , etc.), plus some more. For example,

in the hyper–reals there is a number greater than zero but that is smaller than every positive real
number (such a number is known as an infinitesimal).

10Kolmogorov was also well aware of Borel’s problem and in response gave a more sophisti-
cated treatment of conditional probability using the Radon–Nikodym theorem. The details of
this approach are beyond the scope of this survey. Suffice to say though, this approach is not
completely satisfactory either—see Hájek [2003] and Seidenfeld et al. [2001] for reasons why.
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fairly. Surely, this should be 1/2, but CP defines this conditional probability as:

P�heads; I toss the coin fairly� � P�heads^ I toss the coin fairly�
P�I toss the coin fairly�

But you have no information about how likely it is that I will toss the coin fairly.
For all you know, I never toss coins fairly, or perhaps I always toss them fairly.
Without this information, the terms on the right hand side of the above equality
may be undefined, yet the conditional probability on the left is defined.

There are other problems with taking absolute probability as the fundamen-
tal notion of probability, see Hájek [2003] for a discussion. These problems
have led many authors to take conditional probability as primitive. However,
this requires a new approach to the formal theory of probability. And so we now
turn to theories of probability that take conditional probability as the primitive
notion of probability.

2.2. Conditional Probability as Primitive

The following axiom system—based on the work of Alfred Rényi (Rényi [1955])—
is a formal theory of probability where conditional probability is the funda-
mental concept. Let 
 be a non-empty set, A be an algebra on 
, and B be a
non-empty subset of A . We then define a function, P , from A �B to R such
that:11

(RCP1) P�A; B� � 0;
(RCP2) P�B; B� � 1;
(RCP3) P�A1 [A2; B� � P�A1; B�� P�A2; B�; if A1 \A2 � ;
(RCP4) P�A1 \A2; B� � P�A1; A2 \ B� � P�A2; B�

where the As are in A and the Bs are in B. Any function that satisfies these
axioms is called a Rényi conditional probability function.12 RCP3 is the condi-
tional analogue of the KP3 finite additivity axiom and it also has a countable
version:

(RCP5) P

0@i�1[
i�1

Ai; B

1A � i�1X
i�1

P�Ai; B�

on the condition that the Ai are mutually exclusive. RCP4 is the conditional
analogue of CP, and absolute probability can then be defined in the following
way:

(AP) P�A� df� P�A;
�

Popper, in many places, gives alternative axiomatizations of probability
where conditional probability is the primitive notion (see, e.g., Popper [1938],
Popper [1955], Popper [1959a], and Popper [1959b]). The following set of ax-

11X � Y is the Cartesian product of the sets X and Y . So for example, if X � fx1; x2; x3g and
Y � fy1; y2g, then X � Y � f�x1; y1�; �x1; y2�; �x2; y1�; �x2; y2�; �x3; y1�; �x3; y2�g.

12And any quadruple, �
;A ;B; P�, that satisfies the above conditions is called a R’́enyi condi-
tional probability space.
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ioms are a user-friendly version of Popper’s axioms (these are adapted from
Roeper and Leblanc [1999], p. 12):

(PCP1) P�A; B� � 0

(PCP2) P�A;A� � 1

(PCP3) P�A; B�� P�:A;B� � 1 if B is P–normal

(PCP4) P�A^ B;C� � P�A; B ^ C� � P�B;C�
(PCP5) P�A^ B;C� � P�B ^A;C�
(PCP6) P�A; B ^ C� � P�A;C ^ B�
(PCP7) There is a D in O such that D is P–normal

for every A, B, and C in O. O is the set of “objects” of probability—they could
be sentences, events, states of affairs, propositions, etc. An “object”, B, is P–
abnormal if and only if P�A; B� � 1 for every A in O, and it is P–normal if and
only if it is not P–abnormal. P–abnormality plays the same role as logical false-
hood. Any function, P , that satisfies the above axioms is known as a Popper
conditional probability function, or often just as a Popper function, for short.
This axiom system differs from Rényi’s in that: (i) it is symmetric (i.e., if P�A; B�
exists, then P�B;A� exists) and (ii) it is autonomous. An axiom system is au-
tonomous if, in that system, probability conclusions can be derived only from
probability premises. For example, the axiom system P1–3 is not autonomous,
because, for instance, we can derive that P�A� � 1, from the premise that A is
a logical truth.

2.3. Other Formal Theories of Probability

We have just seen what may be the four most prominent formal theories of
probability. But there are many other theories also on the market—too many to
go into their full details here, so I will merely give a brief overview of the range
of possibilities.

Typically it is assumed that the logic of the language that probabilities are
defined over is classical logic. However, there are probability theories that are
based on other logics. Brian Weatherson, for instance, introduces an intuition-
istic theory of probability (Weatherson [2003]). He argues that this probability
theory, used as a theory of rational credences, is the best way to meet certain
objections to Bayesianism (see §3.5.2). The defining feature of this formal ac-
count of probability is that it allows an agent to have credences in A and :A
that do not sum to 1, but are still additive. This can be done because it is not a
theorem in this formal theory of probability that P�A_:A� � 1.

Another example of a “non-classical” probability theory is quantum prob-
ability. Quantum probability is based on a non-distributive logic, so it is not
a theorem that P��A ^ B� _ C�� � P��A _ C� ^ �B _ C��. Hilary Putnam uses
this fact to argue that such a logic and probability makes quantum mechanics
less mysterious than it is when classical logic and probability theory are used
(Putnam [1968]). One of his examples is how the incorrect classical probabil-
ity result for the famous two–slit experiment does not go through in quantum
probability (see Putnam [1968] for more details and examples). See Dickson
[2001]—who argues that quantum logic (and probability) is still a live option
for making sense of quantum mechanics—for more details and references.
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As we will see in §3.5, the probability calculus is often taken to be set of
rationality constraints on the credences (degrees of belief) of an individual. A
consequence of this—that many philosophers find unappealing—is that an in-
dividual, to be rational, should be logically omniscient. Ian Hacking introduces
a set of probability axioms that relax the demand that an agent be logically
omniscient (Hacking [1967]).

Other formal theories of probability vary from probability values being neg-
ative numbers (see, e.g., Feynman [1987]), to imaginary numbers (see, e.g., Cox
[1955]), to unbounded real numbers (see, e.g., Rényi [1970]), to real numbered
intervals (see, e.g, Levi [1980]). Dempster-Shafer Theory is also often said to
be a competing formal theory of probability (see, e.g., Shafer [1976]). For more
discussion of other formal theories of probability see Fine [1973].

That concludes our survey of the various formal theories of probability. So
far though, we have only half of the picture. We do not yet have any account
of what probabilities are, only how they behave. This is important because
there are many things in the world that behave like probabilities, but are not
probabilities. Take for example, areas of various regions of a tabletop where
one unit of area is the entire area of the tabletop. The areas of such regions
satisfy, for example, Kolmogorov’s axioms, but are clearly not probabilities.

3. The Philosophical Theory of Probability

Interpretations of probability are typically categorized into two kinds: subjec-
tive interpretations and objective interpretations. Roughly, the difference is
that subjective interpretations identify probabilities with the credences, or “de-
grees of belief” of a particular individual, while objective interpretations iden-
tify probability with something that is independent of any individual—the most
common somethings being relative frequencies and propensities. The following
is a brief survey of some of the interpretations of probability that philosophers
have proposed. It is impossible to give a full and just discussion of each inter-
pretation in the space available, so only a small selection of issues surrounding
each will be discussed.

3.1. The Classical Interpretation

The central idea behind the classical interpretation of probability—historically
the first of all the interpretations—is that the probability of an event is the ra-
tio between the number of equally possible outcomes in which the event occurs
and the total number of equally possible outcomes. This conception of proba-
bility is particularly well suited for probability statements concerning games of
chance. Take, for example, a fair roll of a fair die. We quite naturally say that
the probability of an even number coming up is 3/6 (which, of course, is equal
to 1/2). The “3” is for the three ways in which an even number comes up (2, 4,
and 6) and the “6” is for all of the possible numbers that could come up (1, 2,
3, 4, 5, and 6).

The idea of relating probabilities to equally possible outcomes can be found
in the works of many great authors—e.g., Cardano [1663], Laplace [1814] and
Keynes [1921]. However, among these authors there is a considerable degree of
variation in how this idea is fleshed out. In particular, they vary on how we are
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to understand what it means for events to be “equally possible”. In the hands
of some, the equally possible outcomes are those outcomes that are symmetric
in some physical way. For example, the possible outcomes of a fair roll of a
fair die might be said to be all equally possible because of the physical sym-
metries of the die and in the way the die is rolled. If we understand “equally
possible” this way, then the classical interpretation is an objective interpreta-
tion. However, the most canonical understanding of the term “equally possible”
is in terms of our knowledge (or lack thereof). Laplace is a famous proponent
of this understanding of “equally possible”:

The theory of chance consists in reducing all the events of the same kind to a cer-
tain number of cases equally possible, that is to say, to such as we may be equally
undecided about in regard to their existence, and in determining the number of
cases favorable to the event whose probability is sought. (my emphasis) Laplace
[1814], p. 6

Understood this way, the classical interpretation is a subjective interpretation
of probability. From now on, I will assume that the classical interpretation is
a subjective interpretation, as this is the most popular understanding of the
interpretation—see Hacking [1971] for a historical study of the notion of equal
possibilities and the ambiguities in the classical interpretation.

If we follow Laplace, then the classical interpretation puts constraints on
how we ought to assign probabilities to events. More specifically, it says we
ought to assign equal probability to events that we are “equally undecided
about”. This norm was formulated as a principle now known as the Principle of
Indifference by John Maynard Keynes:

If there is no known reason for predicating of our subject one rather than another
of several alternatives, then relative to such knowledge the assertions of each of
these alternatives have an equal probability. Keynes [1921], p. 42

It is well known that the Principle of Indifference is fraught with paradoxes—
many of which originate with Joseph Bertrand (Bertrand [1888]). Some of these
paradoxes are rather mathematically complicated, but the following is a simple
one due to Bas van Fraassen (van Fraassen [1989]). Consider a factory that
produces cubic boxes with edge lengths anywhere between (but not including)
0 and 1 meter, and consider two possible events: (a) the next box has an edge
length between 0 and 1/2 meters or (b) it has an edge length between 1/2 and
1 meters. Given these considerations, there is no reason to think either (a) or
(b) is more likely than the other, so by the Principle of Indifference we ought
to assign them equal probability: 1/2 each. Now consider the following four
events: (i) the next box has a face area between 0 and 1/4 square meters; (ii)
it has a face area between 1/4 and 1/2 square meters; (iii) it has a face area
between 1/2 and 3/4 square meters; or (iv) it has a face area between 3/4 and
1 square meters. It seems we have no reason to suppose any of these four
events to be more probable than any other, so by the Principle of Indifference
we ought to assign them all equal probability: 1/4 each. But this is in conflict
with our earlier assignment, for (a) and (i) are different descriptions of the same
event (a length of 1/2 meters corresponds to an area of 1/4 square meters). So
the probability assignment that the Principle of Indifference tells us to assign
depends on how we describe the box factory: we get one assignment for the
“side length” description, and another for the “face area” description.

There have been several attempts to save the classical interpretation and the
Principle of Indifference from paradoxes like the one above, but many authors
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consider the paradoxes to be decisive. See Keynes [1921] and van Fraassen
[1989] for a detailed discussion of the various paradoxes, and see Jaynes [1973],
Marinoff [1994], and Mikkelson [2004] for a defense of the principle. Also see
Shackel [2007] for a contemporary overview of the debate. The existence of
paradoxes like the one above were one source of motivation for many authors
to abandon the classical interpretation and adopt the frequency interpretation
of probability.

3.2. The Frequency Interpretation

3.2.1. Actual Frequencies

Ask any random scientist or mathematician what the definition of probability is
and they will probably respond to you with an incredulous stare or, after they
have regained their composure, with some version of the frequency interpreta-
tion. The frequency interpretation says that the probability of an outcome is
the number of experiments in which the outcome occurs divided by the number
of experiments performed (where the notion of an “experiment” is understood
very broadly). This interpretation has the advantage that it makes probability
empirically respectable, for it is very easy to measure probabilities: we just go
out into the world and measure frequencies. For example, to say that the prob-
ability of an even number coming up on a fair roll of a fair die is 1/2 just means
that out of all the fair rolls of that die, 50% of them were rolls in which an even
number came up. Or to say that there is a 1/100 chance that John Smith, a
consumptive Englishman aged fifty, will live to sixty-one is to say that out of all
the people like John, 1% of them live to the age of sixty-one.

But which people are like John? If we consider all those Englishman aged
fifty, then we will include consumptive Englishman aged fifty and all the healthy
ones too. Intuitively, the fact that John is sickly should mean we only consider
consumptive Englishman aged fifty, but where do we draw the line? Should
we restrict the class of those people we consider to those who are also named
John? Surely not, but is there a principled way to draw the line? If there is, it is
hard to say exactly what that principle is. This is important because where we
draw the line affects the value of the probability. This problem is known as the
reference class problem. John Venn was one of the first to notice it:

It is obvious that every individual thing or event has an indefinite number of prop-
erties or attributes observable in it, and might therefore be considered as belonging
to an indefinite number of different classes of things [...]. Venn [1876], p. 194

This can have quite serious consequences when we use probability in our de-
cision making (see, e.g., Colyvan et al. [2001]). Many have taken the reference
class problem to be a difficulty for the frequency interpretation, though Mark
Colyvan et al. (Colyvan et al. [2001]) and Hájek (Hájek [2007c]) point out that it
is also a difficulty for many other interpretations of probability.

The frequency interpretation is like the classical interpretation in that it
identifies the probability of an event with the ratio of favorable cases to cases.
However, it is unlike the classical interpretation in that the cases have to be
actual cases. Unfortunately, this means that the interpretation is shackled too
tightly to how the world turns out to be. If it just happens that I never flip this
coin, then the probability of “tails” is undefined. Or if it is flipped only once and
it lands “tails”, then the probability of “heads” is 1 (this is known as a single
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case probability). To get around these difficulties many move from defining
probability in terms of actual frequencies to defining it in terms of hypothetical
frequencies. There are many other problems with defining probability in terms
of actual frequencies (see Hájek [1996] for fifteen objections to the idea), but
we now move on to hypothetical frequencies.

3.2.2. Hypothetical Frequencies

The hypothetical frequency interpretation tries to put some of the modality
back into probability. It says that the probability of an event is the number of
trials in which the event occurs divided by the number of trials, if the trials were
to occur. On this frequency interpretation, the trials do not have to actually
happen for the probability to be defined. So for the coin that I never flipped,
the hypothetical frequentist can say that the probability of “tails” is 1/2 because
this is the frequency we would observe, if the coin were tossed.

Maybe. But we definitely would not observe this frequency if the coin were
flipped an odd number of times, for then it would be impossible to observe an
even number of “heads” and “tails” events. To get around this sort of problem,
it is typically assumed that the number of trials is countably infinite, so the fre-
quency is a limiting frequency. Defenders of this type of view include Richard
von Mises (von Mises [1957]) and Hans Reichenbach (Reichenbach [1949]). Con-
sider the following sequence of outcomes of a series of fair coin flips:

THTTHTHHT:::

where T is for “tails” and H is for “heads”. We calculate the limiting frequency
by calculating the frequencies of successively increasing finite subsequences.
So for example, the first subsequence is just T , so the frequency of “tails” is 1.
The next larger subsequence is TH, which gives a frequency of 1/2. Then the
next subsequence is THT , so the frequency becomes 2/3. Continuing on in this
fashion:

THTT 3=4
THTTH 3=5
THTTHT 4=6
THTTHTH 4=7
THTTHTHH 4=8
THTTHTHHT 5=9

...
...

These frequencies appear to be settling down to the value of 1/2. If this is
the case, we say that the limiting frequency is 1/2. However, the value of the
limiting frequency depends on how we order the trials. If we change the order
of the trials, then we change the limiting frequency. To take a simple example,
consider the following sequence of natural numbers: �1;2;3;4;5;6;7;8;9;10;
11; :::�. The limiting frequency of even numbers is 1/2. Now consider a dif-
ferent sequence that also has all of the natural numbers as elements, but in
a different order: �1;3;5;2;7;9;11;4; :::�. Now the limiting frequency of even
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numbers is 1/4. This means that the value of a limiting frequency is sensitive
to how we order the trials, and so if probabilities are limiting frequencies, then
probabilities depend on the order of the trials too. This is problematic because
it seems probabilities should be independent of how we order the trials to cal-
culate limiting frequencies.13

Another worry with the hypothetical frequency interpretation is that it does
not allow limiting frequencies to come apart from probabilities. Suppose a coin,
whenever flipped, has a chance of 1/2 that “tails” comes up on any particular
flip. Although highly improbable, it is entirely possible that “tails” never comes
up. Yet the hypothetical frequency interpretation says that this statement of
fifty percent chance of “tails” means that the limiting frequency of “tails” will
be 1/2. So a chance of 1/2 just means that “tails” has to come up at least once
(in fact, half of the time). Many philosophers find this unappealing, for it seems
that it is part of the concept of probability that frequencies (both finite and
limiting frequencies) can come apart from probabilities.

One of the motivations for the move from the actual frequency interpreta-
tion to the hypothetical frequency interpretation was the problem of single–
case probabilities. This was the problem that the actual frequency interpreta-
tion cannot sensibly assign probabilities to one–time–only events. This prob-
lem was also a main motivation for another interpretation of probability, the
propensity interpretation.

3.3. The Propensity Interpretation

The propensity interpretation of probability originates with Popper in Popper
[1957], and was developed in more detail in Popper [1959b]. His motivation
for introducing this new interpretation was the need, that he saw, for a the-
ory of probability that was objective, but that could also make sense of single
case probabilities—particularly the single case probabilities which he thought
were indispensable to quantum mechanics. His idea was (roughly) that a prob-
ability is not a frequency, but rather it is the tendency, the disposition, or the
propensity of an outcome to occur.

Popper, who was originally a hypothetical frequentist, developed the propen-
sity theory of probability as a slight modification of the frequency theory. The
modification was that instead of probabilities being properties of sequences
(viz., frequencies), they are rather properties of the conditions that generate
those sequences, when the conditions are repeated:

This modification of the frequency interpretation leads almost inevitably to the
conjecture that probabilities are dispositional properties of these conditions—that
is to say, propensities. Popper [1959b], p. 37

And earlier:

Now these propensities turn out to be propensities to realize singular events. (em-
phasis in original) Popper [1959b], p. 28

Perhaps the best known and most influential objection to Popper’s original
propensity interpretation is due to Paul Humpreys, and is known as Humphreys’

13This problem is similar to the problem in decision theory where the expected utility of an
action can depend on how we order the terms in the expected utility calculation. See Nover and
Hájek [2004] for further discussion.
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paradox—though Humphreys himself did not intend the objection to be one
against the propensity interpretation (Humphreys [1985]). The objection, in a
nutshell, is that propensities are not symmetric, but according to the standard
formal theory of probability, probabilities are.14 For example, it is often possi-
ble to work out the probability of a fire having been started by a cigarette given
the smoking remains of a building, but it seems strange to say that the smok-
ing remains has a propensity, or disposition for a cigarette to have stated the
fire. The standard reaction to this fact has been “if probabilities are symmet-
ric and propensities are not, then too bad for the propensity interpretation”.
Humphreys, however, intended his point to be an objection to the standard
formal theory of probability (Humphreys [1985], p. 557) and to the whole en-
terprise of interpreting probability in a way that takes the formal theory of
probability as sacrosanct:

It is time, I believe, to give up the criterion of admissibility [the criterion that a
philosophical theory of probability should satisfy “the” probability calculus]. We
have seen that it places an unreasonable demand upon one plausible construal of
propensities. Add to this the facts that limiting relative frequencies violate the
axiom of countable additivity and that their probability spaces are not sigma-fields
unless further constraints are added; that rational degrees of belief, according to
some accounts, are not and cannot sensibly be required to be countably additive;
and that there is serious doubt as to whether the traditional theory of probability
is the correct account for use in quantum theory. Then the project of constraining
semantics by syntax begins to look quite implausible in this area. Humphreys
[1985], pp. 569–70

In response to Humphreys’ paradox, some authors have offered new formal
accounts of propensities. For example, James Fetzer and Donald Nute devel-
oped a probabilistic causal calculus as a formal theory of propensities (see
Fetzer [1981]). A premise of the argument that leads to the paradox is that
probabilities are symmetric. But as we saw in §2.2, there are formal theories of
probability that are asymmetric—Rényi’s axioms for conditional probability, for
instance. A proponent of Popper’s propensity interpretation could thus avoid
the paradox by adopting an asymmetric formal theory of probability. Unfortu-
nately for Popper though, his own formal theory of probability is symmetric.

There are now many so–called propensity interpretations of probability that
differ from Popper’s original account. Following Donald Gillies, we can di-
vide these accounts into two kinds: long–run propensity interpretations and
single–case propensity interpretations (Gillies [2000b]). Long–run propensity
interpretations treat propensities as tendencies for certain conditions to pro-
duce frequencies identical (at least approximately) to the probabilities in a se-
quence of repetitions of those conditions. Single–case propensity interpreta-
tions treat propensities as dispositions to produce a certain result on a specific
occasion. The propensity interpretation initially developed by Popper (Pop-
per [1957, 1959b]) is both a long–run and single case propensity interpretation.
This is because Popper associates propensities with repeatable “generating con-
ditions” to generate singular events. The propensity interpretations developed
later by Popper (Popper [1990]), and David Miller (Miller [1994, 1996]) can be
seen as only single–case propensity interpretations. These propensity interpre-
tations attribute propensities not to repeatable conditions, but to entire states
of the universe. One problem with this kind of propensity interpretation is

14Remember from §2.2, a formal theory of probability is symmetric if whenever P�A; B� is
defined, P�B;A� is also defined.
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that probability claims are no longer testable (a cost noted by Popper himself,
Popper [1990], p. 17). This is because probabilities are now properties of en-
tire states of the universe—events that are not repeatable—and Popper believed
that to test a probability claim, the event needs to be repeatable so that a fre-
quency can be measured.15

For a general survey and classification of the various propensity theories
see Gillies [2000b], and see Eagle [2004] for twenty–one objections to them.

3.4. Logical Probability

In classical logic, if A ‘ B, then we say A entails B. In model theoretic terms,
this corresponds to every model in which A is true, B is true. The logical inter-
pretation of probability is an attempt to generalize the notion of entailment to
partial entailment. Keynes was one of the earliest to hit upon this idea:

Inasmuch as it is always assumed that we can sometimes judge directly that a
conclusion follows from a premiss, it is no great extension of this assumption to
suppose that we can sometimes recognize that a conclusion partially follows from,
or stands in a relation of probability to a premiss. Keynes [1921], p. 52

On this interpretation “P�B;A� � x” means A entails B to degree x. This
idea has been pursued by many philosophers—e.g., William Johnson (Johnson
[1921]), Keynes (Keynes [1921]), though Rudolf Carnap gives by the far the most
developed account of logical probability (e.g., Carnap [1950]).

By generalizing the notion of entailment to partial entailment, some of these
philosophers hoped that the logic of deduction could be generalized to a logic of
induction. If we let c be a two–place function that represents the confirmation
relation, then the hope was that:

c�B;A� � P�B;A�

For example, the observation of ten black ravens deductively entails that there
are ten black ravens in the world, while the observation of five black ravens only
partially entails, or confirms that there are ten black ravens, and the observation
of two black ravens confirms this hypothesis to a lesser degree.

One seemingly natural way to formalize the notion of partial entailment is
by generalizing the model theory of full entailment. Instead of B being true in
every model in which A is true, we relax this to there being some percentage of
the models in which A is true. So “P�B;A� � x”, which is to say, “A partially
entails B to degree x” is true, if the number of models where B and A are true,
divided by the number of models where A is true is equal to x.16 If we think of
models as like “possible worlds”, or possible outcomes then this definition is
the same as the classical definition of probability. We might suspect then that
the logical interpretation shares some of the same difficulties (in particular, the
language relativity of probability) that the classical interpretation has. Indeed,
this is so (see e.g., Gillies [2000a], pp. 29–49).

15This is, perhaps, not the only way in which a probability claim can be tested. For example,
it may be possible to test the claim “this coin has a chance 0.5 to land heads when flipped” by
investigating whether or not the coin is physically symmetrical.

16Unconditional, or absolute probability, P�A�, is understood as the probability of A given a
tautology T , so P�A� � P�A; T� in which case P�A� is just the number of models where A is true
divided by the total number of models (since a tautology is true in every model).
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Carnap maintains that c�B;A� � P�B;A�, but investigates other ways to de-
fine the probability function, P . In contrast to the approach above, Carnap’s
way of defining P is purely syntactic. He starts with a language with predicates
and constants, and from this language defines what are called state descriptions.
A state description can be thought of as a maximally specific description of the
world. For example, in a language with predicates F and G, and constants a
and b, one state description is Fa ^ Fb ^ Gb ^ :Ga. Any state description is
equivalent to a conjunction of predications where every predicate or its nega-
tion is applied to every constant in the language. Carnap then tried to define
the probability function, P , in terms of some measure, m, over all of the state
descriptions. In Carnap [1950], he thought that such a measure was unique.
Later on, in Carnap [1963], he thought there were many such measures. Unfor-
tunately, every way Carnap tried to define P in terms of a measure over state
descriptions failed for one reason or another (see e.g., Hájek [2007b]).

Nearly every philosopher now agrees that the logical interpretation of prob-
ability is fundamentally flawed. However, if they are correct, this does not entail
that a formal account of inductive inference is not possible. Recent attempts
at developing an account of inductive logic reject the sole use of conditional
probability and instead measure the degree to which evidence E confirms hy-
pothesisH by how much E affects the probability ofH (see e.g., Fitelson [2006]).
For example, one way to formalize the degree to which E supports or confirms
H is by how much E raises the probability of H:

c�H; E� � P�H;E�� P�H�

This is one such measure among many.17 The function c, or some other func-
tion like it, may formally capture the notion of evidential impact that we have,
but these functions are defined in terms of probabilities. So an important and
natural question to ask is: what are these probabilities? Perhaps the most pop-
ular response is that these probabilities are subjective probabilities, i.e., the
credences of an individual. According to this type of theory of confirmation
(known as Bayesian confirmation theory), the degree to which some evidence
confirms a hypothesis is relative to the epistemic state of an individual. So E
may confirm H for one individual, but disconfirm H for another. This moves us
away from the strictly objective relationship between evidence and hypothesis
that the logical interpretation postulated, to a more subjective one.

3.5. The Subjective Interpretation

While the frequency and propensity interpretations see the various formal ac-
counts of probability as theories of how frequencies and propensities behave,
the subjective interpretation sees them as theories of how people’s beliefs
ought to behave. We can find this idea first published in English by Frank
Ramsey (Ramsey [1931]) and de Finetti (de Finetti [1931a,b]). The normativity
of the “ought” is meant to be one of ideal epistemic rationality. So subjectivists
traditionally claim that for one to be ideally epistemically rational, one’s beliefs
must conform to the standard probability calculus. Despite the intuitive ap-
peal of this claim (which by the way is typically called probabilism), many have
felt the need to provide some type of argument for it. Indeed, there is now a

17See Eells and Fitelson [2002] for an overview of some of the other possible measures.
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formidable literature on such arguments. Perhaps the most famous argument
for probabilism is the Dutch Book Argument.

3.5.1. The Dutch Book Argument

A Dutch Book is any collection of bets that collectively guarantee a sure mon-
etary loss. An example will help illustrate the idea. Suppose Bob assigns a
credence of 0.6 to a statement, A, and a credence of 0.5 to that statement’s
negation, :A. Bob’s credences thus do not satisfy the probability calculus since
his credence in A and his credence in :A sum to 1.1. Suppose further that Bob
bets in accordance with his credences, that is, if he assigns a credence of x to
A, then he will buy a bet that pays $y if A, for at most $xy . Now consider the
following two bets:

� Bet 1: This bet costs $0:6 and pays $1 if A is true.

� Bet 2: This bet costs $0:5 and pays $1 if :A is true.

Bob evaluates both of these bets as fair, since the expected return—by his
lights—of each bet is the price of that bet.18 But suppose Bob bought both
of these bets. This would be apparently equivalent to him buying the following
bet:

� Bet 3: This bet costs $0:6� $0:5 � $1:1 and pays $1 if A is true, and $1 if
:A is true (i.e., the bet pays $1 no matter what).

If Bob were to accept Bet 3, then Bob would be guaranteed to lose $0:1, no
matter what. The problem for Bob is that he evaluates Bet 1 and Bet 2 as both
individually fair, but by purchasing both Bet 1 and Bet 2, Bob effectively buys
Bet 3, which he does not evaluate as fair (since his expected return of the bet is
less than the price of the bet).

There is a theorem called The Dutch Book Theorem which, when read infor-
mally, says that if an agent has credences like Bob’s—i.e., credences that do not
obey axioms P1–3—then there is always a Dutch Book that the agent would be
willing to buy. So having credences that do not obey axioms P1–3, results in
you being susceptible to a Dutch Book. Conversely, there is a theorem called
the The Converse Dutch Book Theorem which, when also read informally, says
that if an agent has credences that do obey P1–3, then there is no Dutch Book
that that agent would be willing to buy. Taken together these two theorems
give us:

(DBT & CDBT) An agent is susceptible to a Dutch Book if and only if
the agent has credences that violate axioms P1–3.

Then with the following rationality principle:

(RP) If an agent is ideally epistemically rational, then that agent is
not susceptible to a Dutch Book.

we get the following result:

18To work out the expected return of a bet we multiply the probability of each pay-off by the
value of that pay-off and sum these numbers together. For example, in Bet 1 there is only one
pay-off—$1, when A is true—so we multiply that by Bob’s credence in A, 0.6, so the expected
return is $0:6.
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(C) If an agent is ideally epistemically rational, then that agent’s
credences obey axioms P1–3.

This is known as the Dutch Book Argument. It is important that CDBT is in-
cluded, because it blocks an obvious challenge to RP. Without CDBT one might
claim that it is impossible to avoid being susceptible to a Dutch book, but it
is still possible to be ideally epistemically rational. CDBT guarantees that it is
possible to avoid a Dutch book, and combined with DBT it entails that the only
way to do this is to have one’s credences satisfy the axioms P1–3.

There are many criticisms of the Dutch Book Argument—too many to list
all of them here, but I will mention a few.19 One criticism is that it is not clear
that the notion of rationality at issue is of the right kind. For example, David
Christensen writes:

Suppose, for example, that those who violated the probability calculus were regu-
larly detected and tortured by the Bayesian Thought Police. In such circumstances,
it might well be argued that violating the probability calculus was imprudent, or
even “irrational” in a practical sense. But I do not think that this would do anything
toward showing that probabilistic consistency was a component of rationality in
the epistemic sense relevant here.” Christensen [1991], p. 238

In response to this worry, some have offered what are called depragmatized
dutch book arguments, in support of probabilism (see e.g., Christensen [1996]).
Others have stressed that the Dutch Book Argument should not be interpreted
literally and rather that it merely dramatizes the inconsistency of a system of
beliefs that do not obey the probability calculus (e.g., Skyrms [1984], p. 22 and
Armendt [1993], p. 3).

Other criticisms focus on the assumptions of the Dutch Book and Converse
Dutch Book Theorems. For instance, the proofs of these theorems assume that
if an agent evaluates two bets as both fair when taken individually, then that
agent will, and should, also consider them to be fair when taken collectively.
This assumption is known as the package principle (see Schick [1986] and Ma-
her [1993] for criticisms of this principle). The standard Dutch Book Argument
is meant to establish that our credences ought to satisfy axioms P1–3, but what
about a countable additivity axiom? Dutch book arguments that try to establish
a countable additivity axiom as a rationality constraint rely on a countably infi-
nite version of the package principle (see Arntzenius et al. [2004] for objections
to this principle).

These objections to the Dutch Book Argument—and others—have led some
authors to search for other arguments for probabilism. For instance, Patrick
Maher argues that if you cannot be represented as an expected utility max-
imizer, relative to a probability and utility function, then you are irrational
(Maher [1993]). Some have argued that one’s credences ought to obey the prob-
ability calculus because for any non–probability function, there is a probability
function that better matches the relative frequencies in the world, no matter
how the world turns out. This is known as a calibration argument (see e.g., van
Fraassen [1984]). James Joyce argues for probabilism by proving that for any
non–probability function, there is a probability function that is “closer” to the
truth, no matter how the world turns out (Joyce [1998]). This is known as a
gradational accuracy argument. For criticisms of all these arguments see Hájek
[forthcoming].

19For a detailed discussion of these and other objections see Hájek [2007a].
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Suppose for the moment that it has been established that one’s credences
ought to satisfy the probability axioms. Are these the only normative con-
straints on credences? One feature our beliefs have is that they change over
time, especially when we learn new facts about the world. And it seems that
there are rational and irrational ways of changing one’s beliefs. In fact, perhaps
most probabilists believe that there are rational and irrational ways to respond
to evidence, beyond simply remaining in synch with the probability calculus.
One particularly large subgroup of these probabilists are known as Bayesians.

3.5.2. Bayesianism

Orthodox Bayesianism is the view that an agent’s credences: should at all times
obey the probability axioms; should change only when the agent acquires new
information; and, in such cases, the agent’s credences should be updated by
Bayesian Conditionalisation. Suppose that an agent has a prior credence func-
tion Crold. Then, according to this theory of updating, the agent’s posterior
credence function, Crnew, after acquiring evidence E ought to be:

(BC) Crnew�H� � Crold�H; E�

for every H in L. BC is said to be a diachronic constraint on credences, whereas
for example, P1–3 are said to be synchronic constraints on credences. There
are Dutch Book Arguments for why credences ought to be diachronically con-
strained by Bayesian Conditionalization (see e.g., Lewis [1999]). Arguments of
this type suppose that BC is a rationality constraint, and that violations of it are
a type of inconsistency. Christensen argues that since the beliefs are changing
across time, violations of BC are not, strictly speaking, inconsistencies (Chris-
tensen [1991]).

One important criticism of orthodox Bayesianism, due to Richard Jeffrey,
is that it assumes that facts are always acquired (learned) with full certainty
(Jeffrey [1983]). Critics argue that it should at least be possible for evidence
that you are not entirely certain of to impact your credences. For this reason,
Jeffrey developed an alternative account for how credences should be updated
in the light of new evidence, which generalized BC to account for cases when
we acquire evidence without full certainty. Jeffrey called his theory Probability
Kinematics, but it is now known as Jeffrey Conditionalization. According to
Jeffrey Conditionalization, an agent’s new credence in H after acquiring some
information that has affected the agent’s credence in E should be:

(JC) Crnew�H� � Crold�H; E�Crnew�E�� Crold�H;:E�Crnew�:E�

for every H in LPC .20 Notice that the right-hand side of JC contains both the old
and new credence function, whereas BC only had the old credence function. At
first glance this may give the impression that JC is circular. It is not though. Ini-
tially you have a probability in E and :E, Crold�E� and Crold�:E�, respectively.
Then you acquire some information that causes you to change your credences
concerning E and :E (and only these statements). These new credences are

20Actually, this is a special case of Jeffrey Conditionalisation. The general equation is:
Crnew�H� �

P
i Crold�H; Ei�Crnew�Ei�, where the Ei are mutually exclusive and exhaustive in

L.
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Crnew�E� and Crnew�:E�, respectively. JC then tells you how the information
you acquired should affect your other credences, given how that information
affected your credences concerning E and :E.

So, Bayesianism is a theory of epistemic rationality that says our credences
at any given time should obey the probability calculus and should be updated
by conditionalization (either BC or JC). However, some insist that there is still
more to a full theory of epistemic rationality.

3.5.3. Objective and Subjective Bayesianism

Within the group of those probabilists who call themselves Bayesians, is an-
other division between so–called objective Bayesians and subjective Bayesians.
As we saw in the previous sections, Bayesians believe that credences should
obey the probability calculus and should be updated according to condition-
alisation, when new information is obtained. So far though, nothing has been
said about which credence function one should have before any information is
obtained—apart from the fact that it should obey the probability calculus.

Subjective Bayesians believe there ought to be no further constraint on ini-
tial credences. They say: given that it satisfies the probability calculus, no
initial credence function is anymore rational than any other. But if subjec-
tive Bayesians believe any coherent initial credence function is a rational one,
then according to them, a credence function that assigns only 1s and 0s to
all statements—including statements that express contingent propositions—is
also a rational credence function. Many philosophers (including those that call
themselves subjective Bayesians) balk at this idea and so insist that any initial
credence function must be regular. A regular credence function is any probabil-
ity function that assigns 1s and 0s only to logical truths and falsehoods; all con-
tingent sentences must be assigned strictly intermediate probability values.21

The idea roughly is that an initial credence function should not assume the
truth of any contingency, since nothing contingent about the world is known
by the agent.

However, we may worry that this is still not enough, for a credence func-
tion that assigns a credence of, say, 0.9999999 to some contingent sentence
(e.g., that the Earth is flat) is still counted as a rational initial credence func-
tion. There are two responses that Bayesians make here. The first is to point
to so–called Bayesian convergence results. The idea, roughly, is that as more
and more evidence comes in, such peculiarities in the initial credence function
are in a sense “washed out” through the process of repeated applications of
conditionalization. More formally, for any initial credence function, there is an
amount of possible evidence that can be conditionalized on to ensure the result-
ing credence function is arbitrarily close to the truth. See Earman [1992] (pp.
141–149) for a more rigorous and critical discussion of the various Bayesian
convergence results.

The second response to the original worry that some Bayesians make is
that there are in fact further constraints on rational initial credence functions.
Bayesians who make this response are known as objective Bayesians. One worry

21There are some technical difficulties with this condition of regularity because it is impossible
(in some formal accounts of probability) for there to be a regular probability function over un-
countably many sentences (or sets, propositions, or whatever the bearers of probability are). See
e.g., Hájek [2003] for discussion.
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with the prior that assigned 1s and 0s to contingent statements was that such
a prior does not truly reflect our epistemic state—we do not know anything
about any contingent proposition before we have learned anything, yet our cre-
dence function says we do. A similar worry may be had about the prior that
assigns 0.9999999 to a contingent statement. This type of prior reports an
overwhelming confidence in contingent statements before anything about the
world is known. Surely such blind confidence cannot be rational. Reasoning
along these lines, E. T. Jaynes, perhaps the most famous proponent of objective
Bayesianism, claims that our initial credence function should be an accurate
description of how much information we have:

[A]n ancient principle of wisdom—that one ought to acknowledge frankly the full
extent of his ignorance—tells us that the distribution that maximizes H subject
to constraints which represent whatever information we have, provides the most
honest description of what we know. The probability is, by this process, “spread
out” as widely as possible without contradicting the available information. Jaynes
[1967], p. 97

The quantity H is from information theory and is known as the Shannon en-
tropy.22 Roughly speaking, H measures the information content of a distri-
bution. According to this view, in the case where we have no information at
all, the distribution that provides the most honest description of our epistemic
state is the uniform distribution. We see then that the principle that Jaynes
advocates—which is known as the Principle of Maximum Entropy—is a gener-
alization of the Principle of Indifference. This version of objective Bayesianism
thus faces problems similar to those that plague the logical and classical in-
terpretations. Most versions of objective Bayesianism ultimately rely on some
version of the Principle of Indifference and so suffer a similar fate. As a re-
sult, subjective Bayesianism with the condition that a prior should be regular is
perhaps the most popular type of Bayesianism amongst philosophers.

3.5.4. Other Norms

At this stage, we have the following orthodox norms on partial beliefs:

1. One’s credence function must always satisfy the standard probability cal-
culus.

2. One’s credence function must only change in accordance with condition-
alisation.

3. One’s intial credence function must be regular.

However, there are still more norms that are often said to apply to beliefs. One
important such norm is David Lewis’ Principal Principle (LPP) (Lewis [1980]).
Roughly, the idea behind this principle is that one’s credences should be in
line with any of the objective probabilities in the world, if they are known.
More formally, if Cht�A� is the chance of A at time t (e.g., on a propensity
interpretation of probability this would be the propensity at time t of A to
obtain), then:

(LPP) Cr�A;Cht�A� � x ^ E� � x
22To learn more about information theory and Shannon entropy, see Shannon and Weaver

[1962].
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where E is any proposition, so long as it is not relevant to A.23 LPP, as origi-
nally formulated by Lewis, is a synchronic norm on an agent’s initial credence
function, though LPP is commonly used as synchronic constraint on an agent’s
credence function at any point in time.

Another synchronic norm is van Fraassen’s Reflection Principle (VFRP) (van
Fraassen [1995]). Roughly, the idea behind this principle is that if, upon reflec-
tion, you realize that you will come to have a certain belief, then you ought to
have that belief now. More formally, the Reflection Principle is:

(VFRP) Crt1�A;Crt2�A� � x� � x

where t2 > t1 in time.
Another more controversial norm is Adam Elga’s principle of indifference

for indexical statements, used to defend a particular solution to the Sleeping
Beauty Problem. The problem is that Sleeping Beauty is told by scientists on
Sunday that they are going to put her to sleep and flip a fair coin. If the coin
lands “tails”, they will wake her on Monday, wipe her memory, put her back to
sleep, and wake her again on Tuesday. If the coin lands “heads”, they will sim-
ply wake her on Monday. When Sleeping Beauty finds herself having just woken
up, what should her credence be that the coin landed “heads”? According to
Lewis, it should be 1/2 since this is the chance of the event and LPP says Sleep-
ing Beauty’s credence should be equal to the chance. According to Elga, there
are three possibilities: (i) she is being woken for the first time, on Monday; (ii)
she is being woken for the second time, on Tuesday; or (iii) she is being woken
for the first time, on Monday. All of these situations are indistinguishable from
Sleeping Beauty’s point of view, and Elga argues that an agent should assign
equal credence to indistinguishable situations—this is his indifference princi-
ple. So according to Elga, Sleeping Beauty should assign equal probability to
each possibility, and so her credence that the coin landed “heads” ought to be
1/3. See Elga [2000] for more on the Sleeping Beauty Problem and Weatherson
[2005] for criticism of Elga’s version of the Principle of Indifference.

4. Conclusion

In a short amount of space we have covered a lot of territory in the philosophy
of probability. In §2, we considered various formal theories of probability. We
saw that not only are there rival theories to Kolmogorov’s axioms, but these ri-
vals arguably have desirable features that Kolmogorov’s axioms lack. In §3, we
saw some of the various interpretations of probability and some of the issues
connected with each interpretation. The discussion of each interpretation was
necessarily brief, but each of these interpretations suffers from one problem
or another. In fact, the failures of each interpretation have motivated some to
take probability as a primitive, undefined concept (e.g., Sober [forthcoming]).
We see then, that despite the ubiquity of probability in our lives, the mathemat-
ical and philosophical foundations of this fruitful theory remain in contentious
dispute.24

23Actually, strictly speaking E should be what Lewis calls admissible. See Lewis [1980] for
details on this issue.

24Thanks to Alan Hájek for many discussions and feedback on earlier drafts, and to Jens Chris-
tian Bjerring, Mark Colyvan, Fritz Allhoff, John Matthewson, Joe Salerno, Mike Smithson, and
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